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An exact solution for progressive capillary waves of 
arbitrary amplitude 

By G. D. CRAPPER 
Department of Mathematics, University of Munchester 

(Received 4 March 1957) 

SUMMARY 
An exact solution is found in a fairly simple form for two- 

dimensional progressive waves of arbitrary amplitude on a fluid 
of unlimited depth, when only surface tension and not gravity 
is taken into account as the restoring force. The calculated wave 
forms are exhibited graphically for various amplitudes, and the 
relation between wave velocity and amplitude is plotted. The 
wave of greatest height opurs  when the vertical distance between 
trough and crest is 0.730 wavelengths (compared with 0.142 for 
gravity waves). Higher waves are prevented from appearing by 
the enclosing of air bubbles in the troughs. 

1. INTRODUCTION 
Periodic gravity waves of finite amplitude have been investigated by 

Stokes (1847; 1880, pp. 197 & 314; see also Lamb 1932, $250) and others, 
and a good approximate solution has been found. The gravity wave of 
greatest height has also been determined (Stokes 1880, p. 225). I t  is 
therefore interesting to see if analogous solutions can be obtained for purely 
capillary waves, for which gravity is neglected ; it is particularly interesting 
as a first step towards investigating the problem of waves of finite amplitude 
under the combined effects of gravity and surface tension. 

Capillary waves are found to be remarkable in that an exact solution 
exists for arbitrary amplitude. The case where the fluid has infinite depth 
was considered first, and, following Stokes, a series approach was made. 
Inspection revealed regularities in the coefficients, however, and the series 
obtained by assuming that these regularities continued in the higher terms 
was found to have a sum in closed form. This sum was then shown to be 
an exact solution. From this original investigation the present method, 
leading directly to the solution, was evolved. The present method indicates 
that there is also an exact solution if the fluid has finite uniform depth. 
The analysis is, however, rather complicated, involving elliptic functions, 
and the solution is not considered worth evaluating in detail. 

The solution for infinite depth shows that the wave velocity given by 
the theory of waves of infinitesimal amplitude (Lamb 1932, $265 & 9 266) 
is accurate only for zero amplitude and that, if the wavelength is fixed, the 
velocity decreases as the amplitude increases. This behaviour is exactly 
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opposite to that of gravity waves. The waves themselves are very rounded 
in section, and the wave of greatest height is reached when the surface 
bends back to touch itself, enclosing a bubble of air. 

2. EQUATIONS OF MOTION IN THE (4 ,  +)-PLANE 

Our investigation will be confined to two-dimensional travelling waves 
on the surface of an ideal fluid which has infinite depth. It is convenient 
to choose Cartesian axes with x measured horizontally to the left and y 
vertically downwards. T o  make the flow steady we bring the waves to rest 
by superimposing a uniform velocity on the system, and therefore we 
assume that the undisturbed fluid (that is, the fluid at great depths) is 
moving in the positive x-direction with velocity c, the wave velocity. 

If the motion is generated from rest, the flow must be irrotational, and 
so the equation of motion is 

where 4 is the velocity potential of the flow. The stream function # also 
satisfies this equation, 

In a steady flow the surface is a streamline, say 6 = 0, and Bernoulli’s 
equation holds, so we have 

Here p represents the difference of pressure from its hydrostatic value ; 
the constant on the right is +c2 because at great depths, where q = c, this 
difference is zero. Surface tension creates a pressure difference across the 
surface which is given by 

where p is the pressure in the fluid at the surface, p ,  is the ‘ atmospheric ’ 
pressure, T is the surface tension, and R is the radius of curvature of the 
surface, counted positive when the centre of curvature lies inside the fluid. 
The use of p to represent the absolute pressure at the surface as well as its 
difference from the hydrostatic value is permissible since gravity is neglected 
as a restoring force. Now when R is positive, d2yldx2 is positive, and so 

p / p  -I- &q2 = 48.  (2) 

P -Pa = T/R, (3 1 

d2y/dx2 - 1 
?i - { 1 + (dy/dx)2}d/2 ’ 

The boundary condition is therefore 

+ 6 4 2  = ic2 on $ = 0. 
T d2yldx2 - 
p (1 + (dy/dx)”3/2 

As the fluid is of infinite depth there are the further conditions 

a s y - t  co. 

a4 a# 
ax ay 

84 
@ -  ax 

- = - + c ,  

- - -  a# +o,  

(4) 

(5) 
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The problem as formulated is very complicated, but it becomes much 
simpler on taking new independent variables ($,#) and new dependent 
variables (7, e), where T = log q and ( 4  cos 6, q sin 6) are the (x, y)-components 
of the velocity of the fluid. 

On any streamline 

where ds is an elementary arc of the streamline, so 

* R -  - q($)  yJ= ooost. 

and we can write ( 5 )  as 
T 86 
-4 -  +&q2 = &c2 on # = 0. 
P a+ (9) 

This can be simplified further if we take T/pc2 as unit of length and c as 
unit of velocity, and this gives 

o n # =  0. (10) 
ae e l  - + Be27 = ?; 
a+ 

Thus, the boundary condition in the (4, +)-plane is 

- -sinhT on $ = 0. 
ae 
q- 

If w = ++i# and x = n+iy,  

and 

dw 
- qe-", z- 

log($) = T-iiB. 

These must be regular functions, so we have, equivalent to the original 
equation of motion ( l ) ,  

and for the same reason we can use the Cauchy-Riemann equations to 
write (11) as 

(15) 

T - + O  a n d 8 + 0  a s # +  co. (16) 

aT 
a* - = -sinhr o n # = O .  

In the new units q -+ 1 as y -+ co, so that the conditions (6) become 

3. GENERAL SOLUTION FOR T 

T o  solve this non-linear problem we look for a solution of (14) which 
satisfies the equation 

aT 
a# - =  -f(+)sinh T 
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everywhere in the flow, for some functionf(+). Such a solution will satisfy 
the boundary condition (15) provided that 

f(0) = 1. (18) 
We can integrate (17) directly : 

logtanh &- = F(+) + G(+), 
where 

and G(+) is arbitrary, or 

where X($)  = e-F(v), (22) 

and Y(4)  = &(4). (23) 
Functions X(+) and Y(+) can now be determined so that Laplace’s 
equation (14) is satisfied. For this to be so we must have 

2{(X’(+))2 + (Y’(+))’) + {X2(+)  - Y2(+)}{ - xB} = 0. (24) 

Differentiating this with respect to and then with respect to gives 

or 

Here each term must be merely a constant, say 

and 

Integrating, we have S”(+) 
F(+) = h ~ S($) +Iy 

where I, m are arbitrary constants, and (24) reduces to 

Xy+) Y(+) 
X(*) I ( + )  - 

X(*) = n, 

2(s‘(14))~ -S(+)s“(+) + m - + 2( Y’(+))z - Y(+)Y”(+) + I - - 
(31) 

(32) 
Hence 2(X’(+))2-X(1/I)s“(+) + m -  X”*) 
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(33) 

(34) 

(35) 

2 ( y ' ( + ) ) 2 -  Y ( l$)Y(+)+l -  YY+) = - n ,  

xyqq = XA) (XZ(#) - I ) ,  

Y(+) 
where, again, n is a constant. 

From (29) 

and from (32) 

But differentiating (35) gives 

h 
1 

2(X'(#))2 = n + t;. (Xz(#)  - Z)(X2(#) - m). 

X//(#) = ~)(X2(#)-Z+XZ(#)-m),  2h (36) 

and therefore l = m ,  (37)  

(38) 
1 

2(X(#) )2  = n + (X2(#) - 1)2 ,  

and similarly 1 
2( Y'(+))2 = - n - (Y"+) - Z)2. (39) 

Thus the general solutions for X(#)  and Y(+) satisfy 

( X ( # ) ) Z  = a, + a2 xy#) + a3 X4(#), 

( y'(+))2 = - a, - a2 Y"+) - a3 Y4(95), 

(40) 

(41) 
where a,, a2, a, are any constants. 

The quadratic case (a, = 0) has been found to satisfy our requirements 
for fluid of infinite depth, but inspection of the full quartic has shown that 
it will give a solution when the fluid depth is finite. It has already been 
pointed out, however, that the analysis needed is too elaborate to make this 
solution worthwhile. 

4. DETAILS OF SOLUTION 

If we put a, = 0 in (40) and (41) we have 

X($) = (a,/a2)1kinh( k + C ) ,  (42) 

Y(4) = i(aI/a2)ll2sin( + D), (43) 

where C, D are constants of integration. 
# -+ 00, so that the condition T + 0 (16) is satisfied. 

Clearly {Y(+)/.Y(#)) - 0 as 

From (20) and (22), 
a 

f(#> = qlogX(#) (44) 

= f k coth( k$ + C), (45) 

(46) 

writing k for air2, and hence the boundary conditionf(0) = 1 determines C: 

C = -t {log( f W)},  
k- 1 

d 2  = -- 
k+ 1' 

where 
(47) 



An exact solution for progressive capillary waves 537 

Now, by (21), (42) and (43), 

(48) 
sinh( & k$ + C) + sinh( _+ ik$ + iD) 

7 = log sinh( _+ k$ + C) - sinh( f ik$ + iD) 

tanh P - 
- logtallhQ * 

where P = 3( &k++C&ik++iD) ,  

Q = &(+k#+CTik+-iD).  

Hence, aT sech2P - sech2Q 
tanh P + *' t q  

so that 8 = ilog(coth Pcoth  &) 
and 9 + 0  as ++ co. 

vJ= 
Thus 

dw 
log = logcoth2Q, 

dw eTikzu+C-iD- 1 - = (  dz eFikw+C-iD+l 
and hence 

From (46), ec = f i/A or T iA, 

and, as it only amounts to adding a constant to $, it is permissible to put 
D = ;T. Then we find that both the alternatives ( 5 5 )  lead to 

Taking the alternative sign is equivalent to adding a constant .rr/k to w 
(i.e. to $), so the solution is unique: 

The  constant has been chosen to make x = w when A = 0. 
the original length and velocity units, we get 

Returning to 

If w is increased by 2.rrc/k, the only effect is to increase u" by 2.rr/k, so we 
have, for the wavelength A, 

h = 2.rr/k 

Hence 

and 

F.M. 2 0  
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where a = WlCX, (62) 
and the range 0 < a < 1 is one wavelength. 
a = ($/cX) and 

On the surface $ = 0, 

1 X 2 A sin 2 m  
x = - -  T 1 + A2 + 2A cos 2na’ I 

r _ = - - -  2 2 1+Acos2nci 
X n- ~r l+A2+2Acos2mx* 

(63 ) I 
From these relations it is easily seen that, if a is the amplitude of the wave, 
defined as the vertical height between trough and crest, then 

a 4A 
- =  
h Tr(l-&)’ 

or 
A = - ,  2X{ ( I + -  ,,,>l’, - l}. 

n-a 

5. RESULTS 
The full equation of the surface, in terms of the parameter a, is 

+ - .  (66) 
z 

Tr Tr 

Preliminary calculations showed that for large enough values of a/X, 
the wave surface crosses itself, and this suggested that the wave of greatest 
height would occur at the value of a/X for which the surface was tangent 
to itself. 

For this to be possible we must have x = 0 for a # 0 ; i.e. 

(67) 
4A sin 2 m  

1 +A2+2Acos2n-ci = 
2rrM ’ 

or A’ - 2Af(Z~ra) + 1 = 0, 
where 2 sin t 

f ( t )  = - -cost, 
t 

and we want the least value of alh for which this condition is satisfied ; i.e. 

wheref(to) is the minimum value off(t). This gives for the wave of greatest 
height 

By contrast, the gravity wave of greatest height has a/h = 0.142 (Michell 
1893). 

An interesting point to notice is that the surface $ = 0 for waves with 
amplitude corresponding to A = A, is the streamline $I = const., given by 

A = f ( t o )  - { ( f ( t o > ) 2  - 1 Y 9  (70) 

alh = 0.730. (71) 

A, e-*lCrl = A 1 (72) 
for waves with amplitude corresponding to A = A, (A, > Al). This 
fact simplifies the computation because the streamlines for the wave of 
greatest height, shown in figure 1, are themselves surface shapes for the 
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= 0.730 

= o  
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Figure 1. Streamlines for the wave of greatest height. Each line is itself the surface 
shape for the stated value of a/A, and if any particular one is taken as surface 
those belowi t are still streamlines. 

(,+ sj' 

a/ 0.5 0.73 1.0 
h 

0 

Figure 2. Ratio of wave velocity for amplitude a to wave velocity for zero amplitude 
for waves of length A. 
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stated values of (a/h), and if any particular line is taken as surface, those 
below it are still streamlines. The  almost circular shape of the crests in 
figure 1 is to be expected in what the streamlines indicate to be a region of 
slow flow, since here surface tension is the dominating force. 

Finally we have, from (60) and (64), 

(73) 

The  function (1 + 7 ~ ~ a ~ / 4 h ~ ) - ~ / ~ ,  which shows how the wave velocity 
falls away from the value given by linear theory as the amplitude increases, 
is drawn in figure 2. 

T h e  author is greatly indebted to Professor M. J. Lighthill for much 
valuable help with the research and preparation of the paper, and to the 
Department of Scientific and Industrial Research for a maintenance grant. 
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